Active Learning with Sampling by Uncertainty and Density for Word Sense Disambiguation and Text Classification
نویسندگان
چکیده
This paper addresses two issues of active learning. Firstly, to solve a problem of uncertainty sampling that it often fails by selecting outliers, this paper presents a new selective sampling technique, sampling by uncertainty and density (SUD), in which a k-Nearest-Neighbor-based density measure is adopted to determine whether an unlabeled example is an outlier. Secondly, a technique of sampling by clustering (SBC) is applied to build a representative initial training data set for active learning. Finally, we implement a new algorithm of active learning with SUD and SBC techniques. The experimental results from three real-world data sets show that our method outperforms competing methods, particularly at the early stages of active learning.
منابع مشابه
Learning a Stopping Criterion for Active Learning for Word Sense Disambiguation and Text Classification
In this paper, we address the problem of knowing when to stop the process of active learning. We propose a new statistical learning approach, called minimum expected error strategy, to defining a stopping criterion through estimation of the classifier’s expected error on future unlabeled examples in the active learning process. In experiments on active learning for word sense disambiguation and...
متن کاملHelping Term Sense Disambiguation with Active Learning
Our research highlights the problem of term polysemy within terminometrics studies. Terminometrics is the measure of term usage in specialized communication. Polysemy, especially within single-word terms as we will show, prevents using term corpus frequencies as appropriate statistics for terminometrics. Automatic term sense disambiguation, as a possible solution, requires human annotation to f...
متن کاملActive Learning for Word Sense Disambiguation with Methods for Addressing the Class Imbalance Problem
In this paper, we analyze the effect of resampling techniques, including undersampling and over-sampling used in active learning for word sense disambiguation (WSD). Experimental results show that under-sampling causes negative effects on active learning, but over-sampling is a relatively good choice. To alleviate the withinclass imbalance problem of over-sampling, we propose a bootstrap-based ...
متن کاملClinical Word Sense Disambiguation with Interactive Search and Classification
Resolving word ambiguity in clinical text is critical for many natural language processing applications. Effective word sense disambiguation (WSD) systems rely on training a machine learning based classifier with abundant clinical text that is accurately annotated, the creation of which can be costly and time-consuming. We describe a double-loop interactive machine learning process, named ReQ-R...
متن کاملApplying active learning to supervised word sense disambiguation in MEDLINE
OBJECTIVES This study was to assess whether active learning strategies can be integrated with supervised word sense disambiguation (WSD) methods, thus reducing the number of annotated samples, while keeping or improving the quality of disambiguation models. METHODS We developed support vector machine (SVM) classifiers to disambiguate 197 ambiguous terms and abbreviations in the MSH WSD collec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008